8 research outputs found

    On the Detection of Cyber-Attacks in the Communication Network of IEC 61850 Electrical Substations

    Get PDF
    The availability of the data within the network communication remains one of the most critical requirement when compared to integrity and confidentiality. Several threats such as Denial of Service (DoS) or flooding attacks caused by Generic Object Oriented Substation Event (GOOSE) poisoning attacks, for instance, might hinder the availability of the communication within IEC 61850 substations. To tackle such threats, a novel method for the Early Detection of Attacks for the GOOSE Network Traffic (EDA4GNeT) is developed in the present work. Few of previously available intrusion detection systems take into account the specific features of IEC 61850 substations and offer a good trade-off between the detection performance and the detection time. Moreover, to the best of our knowledge, none of the existing works proposes an early anomaly detection method of GOOSE attacks in the network traffic of IEC 61850 substations that account for the specific characteristics of the network data in electrical substations. The EDA4GNeT method considers the dynamic behavior of network traffic in electrical substations. The mathematical modeling of the GOOSE network traffic first enables the development of the proposed method for anomaly detection. In addition, the developed model can also support the management of the network architecture in IEC 61850 substations based on appropriate performance studies. To test the novel anomaly detection method and compare the obtained results with available techniques, two use cases are used

    A new hybrid risk assessment process for cyber security design of smart grids using fuzzy analytic hierarchy processes

    Get PDF
    IT vulnerabilities, cyber threats, and resulting risks significantly impact the stability of current and future power grids. The results of a Risk Assessment process contribute to a better understanding of the causes and nature of the associated risks. The risks assessed by experts are available in both numerical and linguistic representations – this makes it beneficial to include a combination of linguistic and numerical analyses. In this paper, we propose a new Hybrid Risk Assessment method based on fuzzy logic, leading to more precise results. The presented approach specifies the variables and membership functions of fuzzy logic with reference to Smart Grids. For this propose, a case study with five risk events in a small-scale Smart Grid is carried out as an example. The results can then support decision-makers in ensuring grid stability

    Early Attack Detection for Securing GOOSE Network Traffic

    Get PDF
    The requirements for the security of the network communication in critical infrastructures have been more focused on the availability of the data rather than the integrity and the confidentiality. The availability of communication in IEC 61850 substations can be hindered by Generic Object Oriented Substation Event (GOOSE) poisoning attacks that might result in threats such as Denial of Service (DoS) or flooding attacks. In order to accurately detect similar attacks, a novel method for the Early Detection of Attacks for GOOSE Network Traffic (EDA4GNeT) is developed in the present work. The EDA4GNeT method considers the dynamic behavior of network traffic in electrical substations. A mathematical modeling of GOOSE network traffic is adopted for the anomaly detection based on statistical hypothesis testing. The developed mathematical model of the communication traffic can also support the management of the network architecture in IEC 61850 substations based on appropriate performance studies. To test the novel anomaly detection method and compare the obtained results with related works found in the literature, a simulation of a DoS attack against a 66/11kV substation with several experiments is used as a case study

    Detection of DoS Attacks Using ARFIMA Modeling of GOOSE Communication in IEC 61850 Substations

    Get PDF
    Integration of Information and Communication Technology (ICT) in modern smart grids (SGs) offers many advantages including the use of renewables and an effective way to protect, control and monitor the energy transmission and distribution. To reach an optimal operation of future energy systems, availability, integrity and confidentiality of data should be guaranteed. Research on the cyber-physical security of electrical substations based on IEC 61850 is still at an early stage. In the present work, we first model the network traffic data in electrical substations, then, we present a statistical Anomaly Detection (AD) method to detect Denial of Service (DoS) attacks against the Generic Object Oriented Substation Event (GOOSE) network communication. According to interpretations on the self-similarity and the Long-Range Dependency (LRD) of the data, an Auto-Regressive Fractionally Integrated Moving Average (ARFIMA) model was shown to describe well the GOOSE communication in the substation process network. Based on this ARFIMA-model and in view of cyber-physical security, an effective model-based AD method is developed and analyzed. Two variants of the statistical AD considering statistical hypothesis testing based on the Generalized Likelihood Ratio Test (GLRT) and the cumulative sum (CUSUM) are presented to detect flooding attacks that might affect the availability of the data. Our work presents a novel AD method, with two different variants, tailored to the specific features of the GOOSE traffic in IEC 61850 substations. The statistical AD is capable of detecting anomalies at unknown change times under the realistic assumption of unknown model parameters. The performance of both variants of the AD method is validated and assessed using data collected from a simulation case study. We perform several Monte-Carlo simulations under different noise variances. The detection delay is provided for each detector and it represents the number of discrete time samples after which an anomaly is detected. In fact, our statistical AD method with both variants (CUSUM and GLRT) has around half the false positive rate and a smaller detection delay when compared with two of the closest works found in the literature. Our AD approach based on the GLRT detector has the smallest false positive rate among all considered approaches. Whereas, our AD approach based on the CUSUM test has the lowest false negative rate thus the best detection rate. Depending on the requirements as well as the costs of false alarms or missed anomalies, both variants of our statistical detection method can be used and are further analyzed using composite detection metrics

    Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study

    No full text
    corecore